The axon is a sophisticated macromolecular machine composed of interrelated parts that transmit signals like spur gears transfer motion between parallel shafts. The growth cone is a fine sensor that integrates mechanical and chemical cues and transduces these signals through the generation of a traction force that pushes the tip and pulls the axon shaft forward. The axon shaft, in turn, senses this pulling force and transduces this signal in an orchestrated response, coordinating cytoskeleton remodeling and intercalated mass addition to sustain and support the advancing of the tip. Extensive research suggests that the direct application of active force is per se a powerful inducer of axon growth, potentially bypassing the contribution of the growth cone. This review provides a critical perspective on current knowledge of how the force is a messenger of axon growth and its mode of action for controlling navigation, including aspects that remain unclear. It also focuses on novel approaches and tools designed to mechanically manipulate axons, and discusses their implications in terms of potential novel therapies for re-wiring the nervous system.

Force: A messenger of axon outgrowth

Raffa, Vittoria
2022-01-01

Abstract

The axon is a sophisticated macromolecular machine composed of interrelated parts that transmit signals like spur gears transfer motion between parallel shafts. The growth cone is a fine sensor that integrates mechanical and chemical cues and transduces these signals through the generation of a traction force that pushes the tip and pulls the axon shaft forward. The axon shaft, in turn, senses this pulling force and transduces this signal in an orchestrated response, coordinating cytoskeleton remodeling and intercalated mass addition to sustain and support the advancing of the tip. Extensive research suggests that the direct application of active force is per se a powerful inducer of axon growth, potentially bypassing the contribution of the growth cone. This review provides a critical perspective on current knowledge of how the force is a messenger of axon growth and its mode of action for controlling navigation, including aspects that remain unclear. It also focuses on novel approaches and tools designed to mechanically manipulate axons, and discusses their implications in terms of potential novel therapies for re-wiring the nervous system.
2022
Raffa, Vittoria
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1084952122002336-main (1).pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 4 MB
Formato Adobe PDF
4 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1150599
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact