Markov-modulated Lévy processes lead to matrix integral equations of the kind A0 + A1X + A2X2 + A3(X) = 0, where A0, A1, A2 are given matrix coefficients, while A3(X) is a nonlinear function, expressed in terms of integrals involving the exponential of the matrix X itself. In this paper we propose some numerical methods for the solution of this class of matrix equations, perform a theoretical convergence analysis, and show the effectiveness of the new methods by means of a wide numerical experimentation. © 2022 Society for Industrial and Applied Mathematics.

Numerical Solution of a Matrix Integral Equation Arising in Markov-Modulated Lévy Processes

Bini, Dario;Latouche, Guy;Meini, Beatrice
2022-01-01

Abstract

Markov-modulated Lévy processes lead to matrix integral equations of the kind A0 + A1X + A2X2 + A3(X) = 0, where A0, A1, A2 are given matrix coefficients, while A3(X) is a nonlinear function, expressed in terms of integrals involving the exponential of the matrix X itself. In this paper we propose some numerical methods for the solution of this class of matrix equations, perform a theoretical convergence analysis, and show the effectiveness of the new methods by means of a wide numerical experimentation. © 2022 Society for Industrial and Applied Mathematics.
2022
Bini, Dario; Latouche, Guy; Meini, Beatrice
File in questo prodotto:
File Dimensione Formato  
mmlp_rev.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 546.49 kB
Formato Adobe PDF
546.49 kB Adobe PDF Visualizza/Apri
bini_latouche_meini_SISC2022.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 569.58 kB
Formato Adobe PDF
569.58 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1150782
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact