The work deals with the model-based characterization of the failure transients of a fail-safe rotary EMA developed by Umbragroup (Italy) for the flap movables of the RACER helicopter-plane by Airbus Helicopters (France). Since the reference application requires quasi-static position-tracking with high disturbance-rejection capability, the attention is focused on control hardover faults which determine an actuator runaway from the commanded setpoint. To perform the study, a high-fidelity nonlinear model of the EMA is developed from physical first principles and the main features of health-monitoring and closed-loop control functions (integrating the conventional nested loops architecture with a deformation feedback loop enhancing the actuator stiffness) are presented. The EMA model is then validated with experiments by identifying its parameters by ad-hoc tests. Simulation results are finally proposed to characterize the failure transients in worst case scenarios by highlighting the importance of using a specifically designed back-electromotive damper circuitry into the EMA power electronics to limit the position deviation after the fault detection.

Minimisation of Failure Transients in a Fail-Safe Electro-Mechanical Actuator Employed for the Flap Movables of a High-Speed Helicopter-Plane

Di Rito, G.
Primo
;
2022-01-01

Abstract

The work deals with the model-based characterization of the failure transients of a fail-safe rotary EMA developed by Umbragroup (Italy) for the flap movables of the RACER helicopter-plane by Airbus Helicopters (France). Since the reference application requires quasi-static position-tracking with high disturbance-rejection capability, the attention is focused on control hardover faults which determine an actuator runaway from the commanded setpoint. To perform the study, a high-fidelity nonlinear model of the EMA is developed from physical first principles and the main features of health-monitoring and closed-loop control functions (integrating the conventional nested loops architecture with a deformation feedback loop enhancing the actuator stiffness) are presented. The EMA model is then validated with experiments by identifying its parameters by ad-hoc tests. Simulation results are finally proposed to characterize the failure transients in worst case scenarios by highlighting the importance of using a specifically designed back-electromotive damper circuitry into the EMA power electronics to limit the position deviation after the fault detection.
2022
Di Rito, G.; Kovel, R.; Nardeschi, M.; Borgarelli, N.; Luciano, B.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1152419
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact