KP4 killer toxins are secreted proteins that inhibit cell growth and induce cell death in target organisms. In Fusarium graminearum, KP4-like (KP4L) proteins contribute to fungal virulence in wheat seedling rot and are expressed during Fusarium head blight development. However, fungal KP4L proteins are also hypothesized to support fungal antagonism by permeabilizing cell walls of competing fungi to enable penetration of toxic compounds. Here, we report the differential expression patterns of F. graminearum KP4L genes (Fgkp4l-1, -2, -3 and -4) in a competitive interaction, using Trichoderma gamsii as the antagonist. The results from dual cultures indicate that Fgkp4l-3 and Fgkp4l-4 could participate in the recognition at the distance of the antagonist, while all Fgkp4l genes were highly activated in the pathogen during the physical interaction of both fungi. Only Fgkp4l-4 was up-regulated during the interaction with T. gamsii in wheat spikes. This suggests the KP4L proteins could participate in supporting F. graminearum interspecific interactions, even in living plant tissues. The distribution of KP4L orthologous within the genus Fusarium revealed they are more represented in species with broad host-plant range than in host-specific species. Phylogeny inferred provides evidence that KP4L genes evolved through gene duplications, gene loss and sequence diversification in the genus Fusarium.

Insights on KP4 Killer Toxin-like Proteins of Fusarium Species in Interspecific Interactions

Giuseppe Quaratiello;Giovanni Vannacci;Sabrina Sarrocco
2022-01-01

Abstract

KP4 killer toxins are secreted proteins that inhibit cell growth and induce cell death in target organisms. In Fusarium graminearum, KP4-like (KP4L) proteins contribute to fungal virulence in wheat seedling rot and are expressed during Fusarium head blight development. However, fungal KP4L proteins are also hypothesized to support fungal antagonism by permeabilizing cell walls of competing fungi to enable penetration of toxic compounds. Here, we report the differential expression patterns of F. graminearum KP4L genes (Fgkp4l-1, -2, -3 and -4) in a competitive interaction, using Trichoderma gamsii as the antagonist. The results from dual cultures indicate that Fgkp4l-3 and Fgkp4l-4 could participate in the recognition at the distance of the antagonist, while all Fgkp4l genes were highly activated in the pathogen during the physical interaction of both fungi. Only Fgkp4l-4 was up-regulated during the interaction with T. gamsii in wheat spikes. This suggests the KP4L proteins could participate in supporting F. graminearum interspecific interactions, even in living plant tissues. The distribution of KP4L orthologous within the genus Fusarium revealed they are more represented in species with broad host-plant range than in host-specific species. Phylogeny inferred provides evidence that KP4L genes evolved through gene duplications, gene loss and sequence diversification in the genus Fusarium.
2022
Vicente, Isabel; Quaratiello, Giuseppe; Baroncelli, Riccardo; Vannacci, Giovanni; Sarrocco, Sabrina
File in questo prodotto:
File Dimensione Formato  
jof-08-00968-3.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1152779
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact