Since the inception of COVID-19 pandemic in December 2019, socio-economic crisis begins to rise globally and SARS-CoV-2 was responsible for this outbreak. With this outbreak, currently, world is in need of effective and safe eradication of COVID-19. Hence, in this study anti-SAR-Co-2 potential of FDA approved marine drugs (Biological macromolecules) data set is explored computationally using machine learning algorithm of Flare by Cresset Group, Field template, 3D-QSAR and activity Atlas model was generated against FDA approved M-pro SARS-CoV-2 repurposed drugs including Nafamostat, Hydroxyprogesterone caporate, and Camostat mesylate. Data sets were categorized into active and inactive molecules on the basis of their structural and biological resemblance with repurposed COVID-19 drugs. Then these active compounds were docked against the five different M-pro proteins co-crystal structures. Highest LF VS score of Holichondrin B against all main protease co-crystal structures ranked it as lead drug. Finally, this new technique of drug repurposing remained efficient to explore the anti-SARS-CoV-2 potential of FDA approved marine drugs.

Exploring the anti-SARS-CoV-2 main protease potential of FDA approved marine drugs using integrated machine learning templates as predictive tools

Brogi S.
;
2022-01-01

Abstract

Since the inception of COVID-19 pandemic in December 2019, socio-economic crisis begins to rise globally and SARS-CoV-2 was responsible for this outbreak. With this outbreak, currently, world is in need of effective and safe eradication of COVID-19. Hence, in this study anti-SAR-Co-2 potential of FDA approved marine drugs (Biological macromolecules) data set is explored computationally using machine learning algorithm of Flare by Cresset Group, Field template, 3D-QSAR and activity Atlas model was generated against FDA approved M-pro SARS-CoV-2 repurposed drugs including Nafamostat, Hydroxyprogesterone caporate, and Camostat mesylate. Data sets were categorized into active and inactive molecules on the basis of their structural and biological resemblance with repurposed COVID-19 drugs. Then these active compounds were docked against the five different M-pro proteins co-crystal structures. Highest LF VS score of Holichondrin B against all main protease co-crystal structures ranked it as lead drug. Finally, this new technique of drug repurposing remained efficient to explore the anti-SARS-CoV-2 potential of FDA approved marine drugs.
2022
Attiq, N.; Arshad, U.; Brogi, S.; Shafiq, N.; Imtiaz, F.; Parveen, S.; Rashid, M.; Noor, N.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1153199
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact