A classical result by Pachner states that two d-dimensional combinatorial manifolds with boundary are PL homeomorphic if and only if they can be connected by a sequence of shellings and inverse shellings. We prove that for balanced, i.e., properly (d + 1)-colored, manifolds such a sequence can be chosen such that balancedness is preserved in each step. As a key ingredient we establish that any two balanced PL homeomorphic combinatorial manifolds with the same boundary are connected by a sequence of basic cross-flips, as was shown recently by Izmestiev, Klee and Novik for balanced manifolds without boundary. Moreover, we enumerate combinatorially different basic cross-flips and show that roughly half of these suffice to relate any two PL homeomorphic manifolds. (C) 2021 Elsevier Inc. All rights reserved.
Balanced shellings and moves on balanced manifolds
Venturello L.
2021-01-01
Abstract
A classical result by Pachner states that two d-dimensional combinatorial manifolds with boundary are PL homeomorphic if and only if they can be connected by a sequence of shellings and inverse shellings. We prove that for balanced, i.e., properly (d + 1)-colored, manifolds such a sequence can be chosen such that balancedness is preserved in each step. As a key ingredient we establish that any two balanced PL homeomorphic combinatorial manifolds with the same boundary are connected by a sequence of basic cross-flips, as was shown recently by Izmestiev, Klee and Novik for balanced manifolds without boundary. Moreover, we enumerate combinatorially different basic cross-flips and show that roughly half of these suffice to relate any two PL homeomorphic manifolds. (C) 2021 Elsevier Inc. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.