We discover a geometric property of the space of tensors of fixed multilinear (Tucker) rank. Namely, it is shown that real tensors of the fixed multilinear rank form a minimal submanifold of the Euclidean space of tensors endowed with the Frobenius inner product. We also establish the absence of local extrema for linear functionals restricted to the submanifold of rank-one tensors, finding application in statistics.

Minimality of tensors of fixed multilinear rank

venturello L.
2022-01-01

Abstract

We discover a geometric property of the space of tensors of fixed multilinear (Tucker) rank. Namely, it is shown that real tensors of the fixed multilinear rank form a minimal submanifold of the Euclidean space of tensors endowed with the Frobenius inner product. We also establish the absence of local extrema for linear functionals restricted to the submanifold of rank-one tensors, finding application in statistics.
2022
Heaton, A.; Kozhasov, K.; Venturello, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1153321
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact