One way to study a hypergraph is to attach to it a tensor. Tensors are a generalization of matrices, and they are an efficient way to encode information in a compact form. In this paper, we study how properties of weighted hypergraphs are reflected on eigenvalues and eigenvectors of their associated tensors. We also show how to efficiently compute eigenvalues with some techniques from numerical algebraic geometry.

Spectral theory of weighted hypergraphs via tensors

Venturello L.
2022-01-01

Abstract

One way to study a hypergraph is to attach to it a tensor. Tensors are a generalization of matrices, and they are an efficient way to encode information in a compact form. In this paper, we study how properties of weighted hypergraphs are reflected on eigenvalues and eigenvectors of their associated tensors. We also show how to efficiently compute eigenvalues with some techniques from numerical algebraic geometry.
2022
Galuppi, F.; Mulas, R.; Venturello, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1153339
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact