In a recent article, Duval, Goeckner, Klivans and Martin disproved the longstanding conjecture by Stanley, that every Cohen–Macaulay simplicial complex is partitionable. We construct counterexamples to this conjecture that are even balanced, i.e. their underlying graph has a minimal coloring. This answers a question by Duval et al. in the negative.

A balanced non-partitionable cohen-macaulay complex

Venturello L.
2019-01-01

Abstract

In a recent article, Duval, Goeckner, Klivans and Martin disproved the longstanding conjecture by Stanley, that every Cohen–Macaulay simplicial complex is partitionable. We construct counterexamples to this conjecture that are even balanced, i.e. their underlying graph has a minimal coloring. This answers a question by Duval et al. in the negative.
2019
Juhnke-Kubitzke, M.; Venturello, L.
File in questo prodotto:
File Dimensione Formato  
ALCO_2019__2_6_1149_0.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 509.01 kB
Formato Adobe PDF
509.01 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1153340
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact