In [], the authors introduced tiered trees to define combinatorial objects counting absolutely indecomposable representations of certain quivers and torus orbits on certain homogeneous varieties. In this paper, we use Theta operators, introduced in [], to give a symmetric function formula that enumerates these trees. We then formulate a general conjecture that extends this result, a special case of which might give some insight about how to formulate a unified Delta conjecture [].
Tiered Trees and Theta Operators
D'Adderio, M;Iraci, A;
2023-01-01
Abstract
In [], the authors introduced tiered trees to define combinatorial objects counting absolutely indecomposable representations of certain quivers and torus orbits on certain homogeneous varieties. In this paper, we use Theta operators, introduced in [], to give a symmetric function formula that enumerates these trees. We then formulate a general conjecture that extends this result, a special case of which might give some insight about how to formulate a unified Delta conjecture [].File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
rnac258.pdf
non disponibili
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
840.49 kB
Formato
Adobe PDF
|
840.49 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
main.pdf
Open Access dal 23/09/2023
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
633.85 kB
Formato
Adobe PDF
|
633.85 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.