Our understanding of climate dynamics during millennial-scale events is incomplete, partially due to the lack of their precise phase analyses under various boundary conditions. Here we present nine speleothem oxygen-isotope records from mid-to-low-latitude monsoon regimes with sub-centennial age precision and multi-annual resolution, spanning the Heinrich Stadial 2 (HS2) - a millennial-scale event that occurred at the Last Glacial Maximum. Our data suggests that the Greenland and Antarctic ice-core chronologies require +320- and +400-year adjustments, respectively, supported by extant volcanic evidence and radiocarbon ages. Our chronological framework shows a synchronous HS2 onset globally. Our records precisely characterize a centennial-scale abrupt "tropical atmospheric seesaw" superimposed on the conventional "bipolar seesaw" at the beginning of HS2, implying a unique response/feedback from low-latitude hydroclimate. Together with our observation of an early South American monsoon shift at the HS2 termination, we suggest a more active role of low-latitude hydroclimate dynamics underlying millennial events than previously thought.

Coupled atmosphere-ice-ocean dynamics during Heinrich Stadial 2

Columbu, Andrea;
2022-01-01

Abstract

Our understanding of climate dynamics during millennial-scale events is incomplete, partially due to the lack of their precise phase analyses under various boundary conditions. Here we present nine speleothem oxygen-isotope records from mid-to-low-latitude monsoon regimes with sub-centennial age precision and multi-annual resolution, spanning the Heinrich Stadial 2 (HS2) - a millennial-scale event that occurred at the Last Glacial Maximum. Our data suggests that the Greenland and Antarctic ice-core chronologies require +320- and +400-year adjustments, respectively, supported by extant volcanic evidence and radiocarbon ages. Our chronological framework shows a synchronous HS2 onset globally. Our records precisely characterize a centennial-scale abrupt "tropical atmospheric seesaw" superimposed on the conventional "bipolar seesaw" at the beginning of HS2, implying a unique response/feedback from low-latitude hydroclimate. Together with our observation of an early South American monsoon shift at the HS2 termination, we suggest a more active role of low-latitude hydroclimate dynamics underlying millennial events than previously thought.
2022
Dong, Xiyu; Kathayat, Gayatri; Rasmussen, Sune O; Svensson, Anders; Severinghaus, Jeffrey P; Li, Hanying; Sinha, Ashish; Xu, Yao; Zhang, Haiwei; Shi, ...espandi
File in questo prodotto:
File Dimensione Formato  
s41467-022-33583-4.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 2.12 MB
Formato Adobe PDF
2.12 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1154479
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact