Let C be a numerically connected curve lying on a smooth algebraic surface. We show that an invertible sheaf H num. eq. to K_C +A is normally generated on C if A is an ample invertible sheaf of degree 3. As a corollary we show that on a smooth algebraic surface of general type the invertible sheaf 3K_S yields a projectively normal embedding of S assuming K_S ample, K_S^2 >=3, pg(S) >= 2 and q(S) = 0.

ARITHMETICALLY COHEN MACAULAY ALGEBRAIC CURVES

FRANCIOSI, MARCO
2007-01-01

Abstract

Let C be a numerically connected curve lying on a smooth algebraic surface. We show that an invertible sheaf H num. eq. to K_C +A is normally generated on C if A is an ample invertible sheaf of degree 3. As a corollary we show that on a smooth algebraic surface of general type the invertible sheaf 3K_S yields a projectively normal embedding of S assuming K_S ample, K_S^2 >=3, pg(S) >= 2 and q(S) = 0.
2007
Franciosi, Marco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/115450
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact