Green surface modification of coconut fibers was performed using laccase biografting of eugenol for the development of antibacterial functionalities and fiber-reinforced polymer composites. Fourier transform infrared analysis, X-ray diffraction and surface morphology of grafted fibers were utilized to confirm the biografting of eugenol. Antibacterial, hydrophobicity and thermal properties were evaluated by colony forming unit (CFU) method, moisture absorption and thermogravimetric analysis, respectively. The grafted surfaces were found to be antibacterial, hydrophobic and thermally more stable. Grafted fibers were reinforced in a poly(butylene succinate) matrix to improve the mechanical properties of the biocomposites. The mechanical properties were improved even with a low content of biografted coconut fibers.
The development of antibacterial and hydrophobic functionalities in natural fibers for fiber-reinforced composite materials
Totaro, GraziaUltimo
2016-01-01
Abstract
Green surface modification of coconut fibers was performed using laccase biografting of eugenol for the development of antibacterial functionalities and fiber-reinforced polymer composites. Fourier transform infrared analysis, X-ray diffraction and surface morphology of grafted fibers were utilized to confirm the biografting of eugenol. Antibacterial, hydrophobicity and thermal properties were evaluated by colony forming unit (CFU) method, moisture absorption and thermogravimetric analysis, respectively. The grafted surfaces were found to be antibacterial, hydrophobic and thermally more stable. Grafted fibers were reinforced in a poly(butylene succinate) matrix to improve the mechanical properties of the biocomposites. The mechanical properties were improved even with a low content of biografted coconut fibers.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.