When considered by a biorefinery approach, an agroindustrial byproduct such as wheat bran can find a new standing in the field of fabrication of mycelium-based materials. The present work reports on a systematic study on the effect of wheat bran as an upgrading feedstock for the growth and development of fully biobased and biodegradable composites. Two families of materials based on bran/cotton and bran/hemp mixtures were fabricated on an industrial scale. The natural materials thus obtained were fully characterized and their end-life was assessed in composting conditions. The research focusses on two main aspects: the nutritional contribution of bran for the fungal growth and its effect on the mechanical properties as a filler in the final composites. It must be noted that the valorization and exploitation of a byproduct such as bran can have a considerable impact on the industrial production of mycelium-based composite materials, by reducing the time of production while increasing their mechanical performances.

Valorization of wheat bran agro-industrial byproduct as an upgrading filler for mycelium-based composite materials

Totaro G.;
2021-01-01

Abstract

When considered by a biorefinery approach, an agroindustrial byproduct such as wheat bran can find a new standing in the field of fabrication of mycelium-based materials. The present work reports on a systematic study on the effect of wheat bran as an upgrading feedstock for the growth and development of fully biobased and biodegradable composites. Two families of materials based on bran/cotton and bran/hemp mixtures were fabricated on an industrial scale. The natural materials thus obtained were fully characterized and their end-life was assessed in composting conditions. The research focusses on two main aspects: the nutritional contribution of bran for the fungal growth and its effect on the mechanical properties as a filler in the final composites. It must be noted that the valorization and exploitation of a byproduct such as bran can have a considerable impact on the industrial production of mycelium-based composite materials, by reducing the time of production while increasing their mechanical performances.
2021
Sisti, L.; Gioia, C.; Totaro, G.; Verstichel, S.; Cartabia, M.; Camere, S.; Celli, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1155189
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 21
social impact