We present an analytical theory of domain-wall tilt due to a transverse in-planemagnetic field in a ferromagnetic nanostrip with out-of-plane anisotropy and Dzyaloshinskii-Moriya interaction (DMI). The theory treats the domain walls as one-dimensional objects with orientation-dependent energy, which interact with the sample edges. We show that under an applied field the domain wall remains straight, but tilts at an angle to the direction of the magnetic field that is proportional to the field strength for moderate fields and sufficiently strong DMI. Furthermore, we obtain a nonlinear dependence of the tilt angle on the applied field at weaker DMI. Our analytical results are corroborated by micromagnetic simulations.
Theory of the Dzyaloshinskii domain-wall tilt in ferromagnetic nanostrips
Muratov, CB
;
2017-01-01
Abstract
We present an analytical theory of domain-wall tilt due to a transverse in-planemagnetic field in a ferromagnetic nanostrip with out-of-plane anisotropy and Dzyaloshinskii-Moriya interaction (DMI). The theory treats the domain walls as one-dimensional objects with orientation-dependent energy, which interact with the sample edges. We show that under an applied field the domain wall remains straight, but tilts at an angle to the direction of the magnetic field that is proportional to the field strength for moderate fields and sufficiently strong DMI. Furthermore, we obtain a nonlinear dependence of the tilt angle on the applied field at weaker DMI. Our analytical results are corroborated by micromagnetic simulations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.