We present an analytical treatment of a three-dimensional variational model of a system that exhibits a second-order phase transition in the presence of dipolar interactions. Within the framework of Ginzburg-Landau theory, we concentrate on the case in which the domain occupied by the sample has the shape of a flat thin film and obtain a reduced two-dimensional, non-local variational model that describes the energetics of the system in terms of the order parameter averages across the film thickness. Namely, we show that the reduced two-dimensional model is in a certain sense asymptotically equivalent to the original three-dimensional model for small film thicknesses. Using this asymptotic equivalence, we analyze two different thin film limits for the full three-dimensional model via the methods of -convergence applied to the reduced two-dimensional model. In the first regime, in which the film thickness vanishes while all other parameters remain fixed, we recover the local two-dimensional Ginzburg-Landau model. On the other hand, when the film thickness vanishes while the sample's lateral dimensions diverge at the right rate, we show that the system exhibits a transition from homogeneous to spatially modulated global energy minimizers. We identify a sharp threshold for this transition.

A universal thin film model for Ginzburg-Landau energy with dipolar interaction

Muratov, CB
2019-01-01

Abstract

We present an analytical treatment of a three-dimensional variational model of a system that exhibits a second-order phase transition in the presence of dipolar interactions. Within the framework of Ginzburg-Landau theory, we concentrate on the case in which the domain occupied by the sample has the shape of a flat thin film and obtain a reduced two-dimensional, non-local variational model that describes the energetics of the system in terms of the order parameter averages across the film thickness. Namely, we show that the reduced two-dimensional model is in a certain sense asymptotically equivalent to the original three-dimensional model for small film thicknesses. Using this asymptotic equivalence, we analyze two different thin film limits for the full three-dimensional model via the methods of -convergence applied to the reduced two-dimensional model. In the first regime, in which the film thickness vanishes while all other parameters remain fixed, we recover the local two-dimensional Ginzburg-Landau model. On the other hand, when the film thickness vanishes while the sample's lateral dimensions diverge at the right rate, we show that the system exhibits a transition from homogeneous to spatially modulated global energy minimizers. We identify a sharp threshold for this transition.
2019
Muratov, Cb
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1156323
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact