We prove a multiplicity result for{-epsilon(2) Delta(g)u + omega u + q(2) phi u = vertical bar u vertical bar(p-2) u in M,-Delta(g)phi + a(2)Delta(2)(g)phi + m(2)phi = 4 pi u(2)where (M, g) is a smooth and compact 3-dimensional Riemannian manifold without boundary, p is an element of (4, 6), a, m, q not equal 0, epsilon > 0 small enough. The proof of this result relies on Lusternik-Schnirellman category. We also provide a profile description for low energy solutions.

Multiple solutions and profile description for a nonlinear Schrodinger-Bopp-Podolsky-Proca system on a manifold

d'Avenia, P;Ghimenti, MG
2022-01-01

Abstract

We prove a multiplicity result for{-epsilon(2) Delta(g)u + omega u + q(2) phi u = vertical bar u vertical bar(p-2) u in M,-Delta(g)phi + a(2)Delta(2)(g)phi + m(2)phi = 4 pi u(2)where (M, g) is a smooth and compact 3-dimensional Riemannian manifold without boundary, p is an element of (4, 6), a, m, q not equal 0, epsilon > 0 small enough. The proof of this result relies on Lusternik-Schnirellman category. We also provide a profile description for low energy solutions.
2022
D'Avenia, P; Ghimenti, Mg
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1156559
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact