The purpose of this manuscript is to develop a reaction-diffusion heart model for closed-loop evaluation of heart-pacemaker interaction, and to provide a hardware setup for the implementation of the closed-loop system. The heart model, implemented on a workstation, is based on the cardiac monodomain formulation and a phenomenological model of cardiac cells, which we fitted to the electrophysiological properties of the different cardiac tissues. We modelled the pacemaker as a timed automaton, deployed on an Arduino 2 board. The Arduino and the workstation communicate through a PCI acquisition board. Additionally, we developed a graphical user interface for easy handling of the framework. The myocyte model resembles the electrophysiological properties of atrial and ventricular tissue. The heart model reproduces healthy activation sequence and proved to be computationally efficient (i.e., 1 s simulation requires about 5 s). Furthermore, we successfully simulated the interaction between heart and pacemaker models in three well-known pathological contexts. Our results showed that the PDE formulation is appropriate for the simulation in closed-loop. While computationally more expensive, a PDE model is more flexible and allows to represent more complex scenarios than timed or hybrid automata. Furthermore, users can interact more easily with the framework thanks to the graphical representation of the spatiotemporal evolution of the membrane potentials. By representing the heart as a reaction-diffusion model, the proposed closed-loop system provides a novel and promising framework for the assessment of cardiac pacemakers.

A reaction-diffusion heart model for the closed-loop evaluation of heart-pacemaker interaction

Biasi, Niccolo;Tognetti, Alessandro
2022-01-01

Abstract

The purpose of this manuscript is to develop a reaction-diffusion heart model for closed-loop evaluation of heart-pacemaker interaction, and to provide a hardware setup for the implementation of the closed-loop system. The heart model, implemented on a workstation, is based on the cardiac monodomain formulation and a phenomenological model of cardiac cells, which we fitted to the electrophysiological properties of the different cardiac tissues. We modelled the pacemaker as a timed automaton, deployed on an Arduino 2 board. The Arduino and the workstation communicate through a PCI acquisition board. Additionally, we developed a graphical user interface for easy handling of the framework. The myocyte model resembles the electrophysiological properties of atrial and ventricular tissue. The heart model reproduces healthy activation sequence and proved to be computationally efficient (i.e., 1 s simulation requires about 5 s). Furthermore, we successfully simulated the interaction between heart and pacemaker models in three well-known pathological contexts. Our results showed that the PDE formulation is appropriate for the simulation in closed-loop. While computationally more expensive, a PDE model is more flexible and allows to represent more complex scenarios than timed or hybrid automata. Furthermore, users can interact more easily with the framework thanks to the graphical representation of the spatiotemporal evolution of the membrane potentials. By representing the heart as a reaction-diffusion model, the proposed closed-loop system provides a novel and promising framework for the assessment of cardiac pacemakers.
2022
Biasi, Niccolo; Seghetti, Paolo; Mercati, Matteo; Tognetti, Alessandro
File in questo prodotto:
File Dimensione Formato  
A_reaction-diffusion_heart_model_for_the_closed-loop_evaluation_of_heart-pacemaker_interaction.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 5.19 MB
Formato Adobe PDF
5.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1157039
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact