The plasma brake is a propellantless device conceived for de-orbiting purposes. It consists of an electrically charged thin tether that generates a Coulomb drag by interacting with the ionosphere. In essence, a plasma brake may be used to decelerate an out-of-service satellite and to ensure its atmospheric re-entry within the time limits established by the Inter-Agency Space Debris Coordination Committee. Moreover, since it only needs a small amount of electric power to work properly, the plasma brake is one of the most cost-effective systems for space debris mitigation. This paper exploits a recent plasma brake acceleration model to construct an iterative algorithm for the rapid evaluation of the decay time of a plasma-braked CubeSat, which initially traced a circular low Earth orbit. The altitude loss at the end of each iterative step was calculated using the linearized Hill-Clohessy-Wiltshire equations. It showed that the proposed algorithm, which was validated by comparing the approximate solution with the results from numerically integrating the nonlinear equations of motion, reduced computational time by up to four orders of magnitude with negligible errors in CubeSat position.

Rapid Evaluation of the Decay Time of a Plasma Brake-Based CubeSat

Bassetto M.
Primo
Conceptualization
;
Niccolai L.
Secondo
Investigation
;
Quarta A. A.
Penultimo
Methodology
;
Mengali G.
Ultimo
Writing – Review & Editing
2022-01-01

Abstract

The plasma brake is a propellantless device conceived for de-orbiting purposes. It consists of an electrically charged thin tether that generates a Coulomb drag by interacting with the ionosphere. In essence, a plasma brake may be used to decelerate an out-of-service satellite and to ensure its atmospheric re-entry within the time limits established by the Inter-Agency Space Debris Coordination Committee. Moreover, since it only needs a small amount of electric power to work properly, the plasma brake is one of the most cost-effective systems for space debris mitigation. This paper exploits a recent plasma brake acceleration model to construct an iterative algorithm for the rapid evaluation of the decay time of a plasma-braked CubeSat, which initially traced a circular low Earth orbit. The altitude loss at the end of each iterative step was calculated using the linearized Hill-Clohessy-Wiltshire equations. It showed that the proposed algorithm, which was validated by comparing the approximate solution with the results from numerically integrating the nonlinear equations of motion, reduced computational time by up to four orders of magnitude with negligible errors in CubeSat position.
2022
Bassetto, M.; Niccolai, L.; Quarta, A. A.; Mengali, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1157605
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact