We present an analysis of edge domain walls in exchange-biased ferromagnetic films appearing as a result of a competition between the stray field at the film edges and the exchange bias field in the bulk. We introduce an effective two-dimensional micromagnetic energy that governs the magnetization behavior in exchange-biased materials and investigate its energy minimizers in the strip geometry. In a periodic setting, we provide a complete characterization of global energy minimizers corresponding to edge domain walls. In particular, we show that energy minimizers are one-dimensional and do not exhibit winding. We then consider a particular thin-film regime for large samples and relatively strong exchange bias and derive a simple and comprehensive algebraic model describing the limiting magnetization behavior in the interior and at the boundary of the sample. Finally, we demonstrate that the asymptotic results obtained in the periodic setting remain true in the case of finite rectangular samples.

Edge Domain Walls in Ultrathin Exchange-Biased Films

Cyrill B. Muratov
;
2020-01-01

Abstract

We present an analysis of edge domain walls in exchange-biased ferromagnetic films appearing as a result of a competition between the stray field at the film edges and the exchange bias field in the bulk. We introduce an effective two-dimensional micromagnetic energy that governs the magnetization behavior in exchange-biased materials and investigate its energy minimizers in the strip geometry. In a periodic setting, we provide a complete characterization of global energy minimizers corresponding to edge domain walls. In particular, we show that energy minimizers are one-dimensional and do not exhibit winding. We then consider a particular thin-film regime for large samples and relatively strong exchange bias and derive a simple and comprehensive algebraic model describing the limiting magnetization behavior in the interior and at the boundary of the sample. Finally, we demonstrate that the asymptotic results obtained in the periodic setting remain true in the case of finite rectangular samples.
2020
Lund, Ross G.; Muratov, Cyrill B.; Slastikov, Valeriy V.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1157803
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact