Theoretical considerations on the competition between the most amplified modes for Darrieus-Landau (DL) hydrodynamic instability and turbulence timescales, show that, two extremal regimes can be identified: the instability-dominated and turbulence-dominated regimes. In the latter, also denoted as unified regime, both experiments and numerical simulations give evidence showing how the large scale, cusp-like structures of the flame front surface, typical of DL instability, are hindered by turbulent fluctuations. The result is that quantities such as turbulent flame propagation and front curvature statistics, which in the instability dominated regime are enhanced or modified by the overwhelming presence of hydrodynamic instability, are now mitigated and a unified regime is reached in which the characteristics of DL unstable and stable flame configurations become indistinguishable. In this work we analyze the concealing effects of increasing level of turbulence over the hydrodynamic Darrieus-Landau instability, and we show that, although some global indices such as the skewness of the curvature p.d.f. suggest that a unified regime is reached, others show the persistence of residual differences: in particular, the power spectral density of the flame front curvature. We use both experimental and numerical datasets of stable and unstable (based on linear stability analysis) flames, in conditions ranging from quasi laminar to significantly turbulent regimes.

Mitigation of Darrieus-Landau instability effects on turbulent premixed flames

Lamioni R.
Secondo
Investigation
;
2021-01-01

Abstract

Theoretical considerations on the competition between the most amplified modes for Darrieus-Landau (DL) hydrodynamic instability and turbulence timescales, show that, two extremal regimes can be identified: the instability-dominated and turbulence-dominated regimes. In the latter, also denoted as unified regime, both experiments and numerical simulations give evidence showing how the large scale, cusp-like structures of the flame front surface, typical of DL instability, are hindered by turbulent fluctuations. The result is that quantities such as turbulent flame propagation and front curvature statistics, which in the instability dominated regime are enhanced or modified by the overwhelming presence of hydrodynamic instability, are now mitigated and a unified regime is reached in which the characteristics of DL unstable and stable flame configurations become indistinguishable. In this work we analyze the concealing effects of increasing level of turbulence over the hydrodynamic Darrieus-Landau instability, and we show that, although some global indices such as the skewness of the curvature p.d.f. suggest that a unified regime is reached, others show the persistence of residual differences: in particular, the power spectral density of the flame front curvature. We use both experimental and numerical datasets of stable and unstable (based on linear stability analysis) flames, in conditions ranging from quasi laminar to significantly turbulent regimes.
2021
Lapenna, P. E.; Troiani, G.; Lamioni, R.; Creta, F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1158171
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
social impact