We establish an abstract quenched linear response result for random dynam- ical systems, which we then apply to the case of smooth expanding on average cocycles on the unit circle. In sharp contrast to the existing results in the literature, we deal with the class of random dynamics that does not necessarily exhibit uniform decay of corre- lations. Our techniques rely on the infinite-dimensional ergodic theory and in particular, on the study of the top Oseledets space of a parametrized transfer operator cocycle. Finally, we exhibit a surprising phenomenon: a random system and a smooth observable for which quenched linear response holds, but annealed response fails.

Quenched Linear Response for Smooth Expanding on Average Cocycles

Giulietti P.;Sedro J.
2023-01-01

Abstract

We establish an abstract quenched linear response result for random dynam- ical systems, which we then apply to the case of smooth expanding on average cocycles on the unit circle. In sharp contrast to the existing results in the literature, we deal with the class of random dynamics that does not necessarily exhibit uniform decay of corre- lations. Our techniques rely on the infinite-dimensional ergodic theory and in particular, on the study of the top Oseledets space of a parametrized transfer operator cocycle. Finally, we exhibit a surprising phenomenon: a random system and a smooth observable for which quenched linear response holds, but annealed response fails.
2023
Dragicevic, D.; Giulietti, P.; Sedro, J.
File in questo prodotto:
File Dimensione Formato  
s00220-022-04560-1.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 506.36 kB
Formato Adobe PDF
506.36 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1158245
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact