We introduce a scalar elliptic equation defined on a boundary layer given by Pi_2 X[0, z_{top}], where Pi_2 is a two dimensional torus, with an eddy vertical viscosity of order z^alpha, alpha in [0, 1], an homogeneous boundary condition at z=0, and a Robin condition at z=z_{top}. We show the existence of weak solutions to this boundary problem, distinguishing the cases 0 <1 and alpha = 1. Then we carry out several numerical simulations, showing the ability of our model to accurately reproduce profiles close to those predicted by the Monin-Obukhov theory, by calculating stabilizing functions.

Surface boundary layers through a scalar equation with an eddy viscosity vanishing at the ground

Luigi C. Berselli;
2024-01-01

Abstract

We introduce a scalar elliptic equation defined on a boundary layer given by Pi_2 X[0, z_{top}], where Pi_2 is a two dimensional torus, with an eddy vertical viscosity of order z^alpha, alpha in [0, 1], an homogeneous boundary condition at z=0, and a Robin condition at z=z_{top}. We show the existence of weak solutions to this boundary problem, distinguishing the cases 0 <1 and alpha = 1. Then we carry out several numerical simulations, showing the ability of our model to accurately reproduce profiles close to those predicted by the Monin-Obukhov theory, by calculating stabilizing functions.
2024
Berselli, Luigi C.; Legeais, Francois; Lewandowski, Roger
File in questo prodotto:
File Dimensione Formato  
Lin_Bound_Layer_V4.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 578.99 kB
Formato Adobe PDF
578.99 kB Adobe PDF Visualizza/Apri
M2AN2024.pdf

accesso aperto

Descrizione: versione finale editoriale
Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1158367
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact