The induction of biocrusts through inoculation-based techniques has gained increasing scientific attention in the last 2 decades due to its potential to address issues related to soil degradation and desertification. The technology has shown the most rapid advances in the use of biocrust organisms, particularly cyanobacteria and mosses, as inoculants and biocrust initiators. Cyanobacteria and mosses are poikilohydric organisms - i.e., desiccation-tolerant organisms capable of reactivating their metabolism upon rehydration - that can settle on bare soils in abiotically stressing habitats, provided that selected species are used and an appropriate and customized protocol is applied. The success of inoculation of cyanobacteria and mosses depends on the inoculant's physiology, but also on the ability of the practitioner to identify and control, with appropriate technical approaches in each case study, those environmental factors that most influence the inoculant settlement and its ability to develop biocrusts.This review illustrates the current knowledge and results of biocrust induction biotechnologies that use cyanobacteria or mosses as inoculants. At the same time, this review's purpose is to highlight the current technological gaps that hinder an efficient application of the technology in the field.

Drought-tolerant cyanobacteria and mosses as biotechnological tools to attain land degradation neutrality

Federico Rossi
Ultimo
2021-01-01

Abstract

The induction of biocrusts through inoculation-based techniques has gained increasing scientific attention in the last 2 decades due to its potential to address issues related to soil degradation and desertification. The technology has shown the most rapid advances in the use of biocrust organisms, particularly cyanobacteria and mosses, as inoculants and biocrust initiators. Cyanobacteria and mosses are poikilohydric organisms - i.e., desiccation-tolerant organisms capable of reactivating their metabolism upon rehydration - that can settle on bare soils in abiotically stressing habitats, provided that selected species are used and an appropriate and customized protocol is applied. The success of inoculation of cyanobacteria and mosses depends on the inoculant's physiology, but also on the ability of the practitioner to identify and control, with appropriate technical approaches in each case study, those environmental factors that most influence the inoculant settlement and its ability to develop biocrusts.This review illustrates the current knowledge and results of biocrust induction biotechnologies that use cyanobacteria or mosses as inoculants. At the same time, this review's purpose is to highlight the current technological gaps that hinder an efficient application of the technology in the field.
2021
Adessi, Alessandra; De Philippis, Roberto; Rossi, Federico
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1159771
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact