We illustrate an algorithm to classify nice nilpotent Lie algebras of dimension n up to a suitable notion of equivalence; applying the algorithm, we obtain complete listings for n≤9. On every nilpotent Lie algebra of dimension ≤7, we determine the number of inequivalent nice bases, which can be 0, 1, or 2. We show that any nilpotent Lie algebra of dimension n has at most countably many inequivalent nice bases.

Construction of nice nilpotent Lie groups

Conti, D;
2019-01-01

Abstract

We illustrate an algorithm to classify nice nilpotent Lie algebras of dimension n up to a suitable notion of equivalence; applying the algorithm, we obtain complete listings for n≤9. On every nilpotent Lie algebra of dimension ≤7, we determine the number of inequivalent nice bases, which can be 0, 1, or 2. We show that any nilpotent Lie algebra of dimension n has at most countably many inequivalent nice bases.
2019
Conti, D; Rossi, Fa
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1159945
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact