We illustrate an algorithm to classify nice nilpotent Lie algebras of dimension n up to a suitable notion of equivalence; applying the algorithm, we obtain complete listings for n≤9. On every nilpotent Lie algebra of dimension ≤7, we determine the number of inequivalent nice bases, which can be 0, 1, or 2. We show that any nilpotent Lie algebra of dimension n has at most countably many inequivalent nice bases.
Construction of nice nilpotent Lie groups
Conti, D;
2019-01-01
Abstract
We illustrate an algorithm to classify nice nilpotent Lie algebras of dimension n up to a suitable notion of equivalence; applying the algorithm, we obtain complete listings for n≤9. On every nilpotent Lie algebra of dimension ≤7, we determine the number of inequivalent nice bases, which can be 0, 1, or 2. We show that any nilpotent Lie algebra of dimension n has at most countably many inequivalent nice bases.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.