We introduce a class of special geometries associated to the choice of a differential graded algebra contained in Λ*ℝn. We generalize some known embedding results, that effectively characterize the real analytic Riemannian manifolds that can be realized as submanifolds of a Riemannian manifold with special holonomy, to this more general context. In particular, we consider the case of hypersurfaces inside nearly-Kähler and α-Einstein-Sasaki manifolds, proving that the corresponding evolution equations always admit a solution in the real analytic case. © 2010 Springer-Verlag.

Embedding into manifolds with torsion

CONTI, DIEGO
2011-01-01

Abstract

We introduce a class of special geometries associated to the choice of a differential graded algebra contained in Λ*ℝn. We generalize some known embedding results, that effectively characterize the real analytic Riemannian manifolds that can be realized as submanifolds of a Riemannian manifold with special holonomy, to this more general context. In particular, we consider the case of hypersurfaces inside nearly-Kähler and α-Einstein-Sasaki manifolds, proving that the corresponding evolution equations always admit a solution in the real analytic case. © 2010 Springer-Verlag.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1159949
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact