We study an odd-dimensional analogue of the Goldberg conjecture for compact Einstein almost Kähler manifolds. We give an explicit non-compact example of an Einstein almost cokähler manifold that is not cokähler. We prove that compact Einstein almost cokähler manifolds with nonnegative *-scalar curvature are cokähler (indeed, transversely Calabi–Yau); more generally, we give a lower and upper bound for the *-scalar curvature in the case that the structure is not cokähler. We prove similar bounds for almost Kähler Einstein manifolds that are not Kähler.

Einstein almost cokähler manifolds

CONTI, DIEGO;
2016-01-01

Abstract

We study an odd-dimensional analogue of the Goldberg conjecture for compact Einstein almost Kähler manifolds. We give an explicit non-compact example of an Einstein almost cokähler manifold that is not cokähler. We prove that compact Einstein almost cokähler manifolds with nonnegative *-scalar curvature are cokähler (indeed, transversely Calabi–Yau); more generally, we give a lower and upper bound for the *-scalar curvature in the case that the structure is not cokähler. We prove similar bounds for almost Kähler Einstein manifolds that are not Kähler.
2016
Conti, Diego; Fernández, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1159958
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact