We study the pseudoriemannian geometry of almost parahermitian manifolds, obtaining a formula for the Ricci tensor of the Levi–Civita connection. The formula uses the intrinsic torsion of an underlying SL(n,ℝ)-structure; we express it in terms of exterior derivatives of some appropriately defined differential forms. As an application, we construct Einstein and Ricci-flat examples on Lie groups. We disprove the parakähler version of the Goldberg conjecture and obtain the first compact examples of a non-flat, Ricci-flat nearly parakähler structure. We study the paracomplex analogue of the first Chern class in complex geometry, which obstructs the existence of Ricci-flat parakähler metrics
The Ricci tensor of almost parahermitian manifolds
Conti, D;
2018-01-01
Abstract
We study the pseudoriemannian geometry of almost parahermitian manifolds, obtaining a formula for the Ricci tensor of the Levi–Civita connection. The formula uses the intrinsic torsion of an underlying SL(n,ℝ)-structure; we express it in terms of exterior derivatives of some appropriately defined differential forms. As an application, we construct Einstein and Ricci-flat examples on Lie groups. We disprove the parakähler version of the Goldberg conjecture and obtain the first compact examples of a non-flat, Ricci-flat nearly parakähler structure. We study the paracomplex analogue of the first Chern class in complex geometry, which obstructs the existence of Ricci-flat parakähler metricsI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.