We study nice nilpotent Lie algebras admitting a diagonal nilsoliton metric. We classify nice Riemannian nilsolitons up to dimension 9. For general signature, we show that determining whether a nilpotent nice Lie algebra admits a nilsoliton metric reduces to a linear problem together with a system of as many polynomial equations as the corank of the root matrix. We classify nice nilsolitons of any signature: in dimension ≤7; in dimension 8 for corank ≤1; in dimension 9 for corank zero.
Nice pseudo-Riemannian nilsolitons
Conti D.;
2022-01-01
Abstract
We study nice nilpotent Lie algebras admitting a diagonal nilsoliton metric. We classify nice Riemannian nilsolitons up to dimension 9. For general signature, we show that determining whether a nilpotent nice Lie algebra admits a nilsoliton metric reduces to a linear problem together with a system of as many polynomial equations as the corank of the root matrix. We classify nice nilsolitons of any signature: in dimension ≤7; in dimension 8 for corank ≤1; in dimension 9 for corank zero.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.