Biofouling on medical device surfaces, which is initiated by protein adsorption and adhesion of microbes especially the antibiotic-resistant bacteria, attracts global attention for centuries due to its enduring challenges in healthcare. Here, the antifouling effect of hydrophilic poly(glycerol glycidyl ether) (polyGGE) film is explored in comparison to hemocompatible and protein-resistant control polymers. The chemical and thermomechanical stability of polyGGE in hydrated conditions at body temperature was achieved via adjusting UV curing and KOH quenching time. The polyGGE surface is inert to the plasma protein adsorption and interfered the metabolism conditions, biofilm formation and growth of both Gram negative (Gram-) and antibiotic-resistant Gram positive (Gram+) bacteria. These results indicate the potential application of polyGGE for combating the risk of hospital-acquired infections and preventing drug-resistant superbug spreading.

Defeating antibiotic-resistant bacteria with protein-resistant polyGGE film

Di Luca, Mariagrazia
Secondo
;
2021-01-01

Abstract

Biofouling on medical device surfaces, which is initiated by protein adsorption and adhesion of microbes especially the antibiotic-resistant bacteria, attracts global attention for centuries due to its enduring challenges in healthcare. Here, the antifouling effect of hydrophilic poly(glycerol glycidyl ether) (polyGGE) film is explored in comparison to hemocompatible and protein-resistant control polymers. The chemical and thermomechanical stability of polyGGE in hydrated conditions at body temperature was achieved via adjusting UV curing and KOH quenching time. The polyGGE surface is inert to the plasma protein adsorption and interfered the metabolism conditions, biofilm formation and growth of both Gram negative (Gram-) and antibiotic-resistant Gram positive (Gram+) bacteria. These results indicate the potential application of polyGGE for combating the risk of hospital-acquired infections and preventing drug-resistant superbug spreading.
2021
Zhou, Shuo; Di Luca, Mariagrazia; Xu, Xun; Ma, Nan; Jung, Friedrich; Lendlein, Andreas
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1160246
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact