Our economy drives on reactive nitrogen (Nr); while Nr emissions to the environment surpass the planetary boundary. Increasingly, it is advocated to recover Nr contained in waste streams and to reuse it 'directly' in the agri-food chain. Alternatively, Nr in waste streams may be removed as N2 and refixed via the Haber-Bosch process in an 'indirect' reuse loop. As a systematic sustainability analysis of 'direct' Nr reuse and its comparison to the 'indirect' reuse loop is lacking, this structured review aimed to analyze literature determining the environmental and economic sustainability of Nr recovery technologies. Bibliometric records were queried from 2000 to 2020 using Boolean search strings, and manual text coding. In total, 63 studies were selected for the review. Results suggest that 'direct' Nr reuse using Nr recovery technologies is the preferred paradigm as the majority of studies concluded that it is sustainable or that it can be sustainable depending on technological assumptions and other scenario variables. Only 17 studies compared the 'direct' with the 'indirect' Nr reuse route, therefore a system perspective in Nr recovery sustainability assessments should be more widely adopted. Furthermore, Nr reuse should also be analyzed in the context of a 'new Nr economy' that relies on decentralized Nr production from renewable energy. It is also recommended that on-par technology readiness level comparisons should be carried out, making use of technology development and technology learning methodologies. Finally, by-products of Nr recovery are important to be accounted for as they are reducing the environmental burdens through avoided impacts.

Environmental and economic sustainability of the nitrogen recovery paradigm: Evidence from a structured literature review

Moretti, M
Secondo
Membro del Collaboration Group
;
2022-01-01

Abstract

Our economy drives on reactive nitrogen (Nr); while Nr emissions to the environment surpass the planetary boundary. Increasingly, it is advocated to recover Nr contained in waste streams and to reuse it 'directly' in the agri-food chain. Alternatively, Nr in waste streams may be removed as N2 and refixed via the Haber-Bosch process in an 'indirect' reuse loop. As a systematic sustainability analysis of 'direct' Nr reuse and its comparison to the 'indirect' reuse loop is lacking, this structured review aimed to analyze literature determining the environmental and economic sustainability of Nr recovery technologies. Bibliometric records were queried from 2000 to 2020 using Boolean search strings, and manual text coding. In total, 63 studies were selected for the review. Results suggest that 'direct' Nr reuse using Nr recovery technologies is the preferred paradigm as the majority of studies concluded that it is sustainable or that it can be sustainable depending on technological assumptions and other scenario variables. Only 17 studies compared the 'direct' with the 'indirect' Nr reuse route, therefore a system perspective in Nr recovery sustainability assessments should be more widely adopted. Furthermore, Nr reuse should also be analyzed in the context of a 'new Nr economy' that relies on decentralized Nr production from renewable energy. It is also recommended that on-par technology readiness level comparisons should be carried out, making use of technology development and technology learning methodologies. Finally, by-products of Nr recovery are important to be accounted for as they are reducing the environmental burdens through avoided impacts.
2022
Spiller, M; Moretti, M; De Paepe, J; Vlaeminck, Se
File in questo prodotto:
File Dimensione Formato  
Res.Cons.Recl_struvite_2022.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 3.85 MB
Formato Adobe PDF
3.85 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1160953
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 18
social impact