Transient faults (TFs) are increasingly affecting micro-electronic devices as their size decreases. During the design phase, the robustness of circuits for high reliability applications with respect to this kind of faults is generally validated through simulations. However, traditional HSPICE like simulators are too slow for the task of simulating the effects of TFs on large circuits. In this paper, we present a novel mathematical model to accurately estimate the possible propagation of transient fault-due glitches through a CMOS combinational circuit, which is suitable to be used into a new simulation tool able to provide good accuracy, while significantly speeding up simulations, with respect to HPSICE. In particular, our model allows approximately 90% accuracy with respect to HSPICE simulations.

A model for transient fault propagation in combinatorial logic

Rossi D.;
2003-01-01

Abstract

Transient faults (TFs) are increasingly affecting micro-electronic devices as their size decreases. During the design phase, the robustness of circuits for high reliability applications with respect to this kind of faults is generally validated through simulations. However, traditional HSPICE like simulators are too slow for the task of simulating the effects of TFs on large circuits. In this paper, we present a novel mathematical model to accurately estimate the possible propagation of transient fault-due glitches through a CMOS combinational circuit, which is suitable to be used into a new simulation tool able to provide good accuracy, while significantly speeding up simulations, with respect to HPSICE. In particular, our model allows approximately 90% accuracy with respect to HSPICE simulations.
2003
0-7695-1968-7
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1160972
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 118
  • ???jsp.display-item.citation.isi??? 88
social impact