Most of the light from blazars, active galactic nuclei with jets of magnetized plasma that point nearly along the line of sight, is produced by high-energy particles, up to around 1 TeV. Although the jets are known to be ultimately powered by a supermassive black hole, how the particles are accelerated to such high energies has been an unanswered question. The process must be related to the magnetic field, which can be probed by observations of the polarization of light from the jets. Measurements of the radio to optical polarization-the only range available until now-probe extended regions of the jet containing particles that left the acceleration site days to years earlier(1-3), and hence do not directly explore the acceleration mechanism, as could X-ray measurements. Here we report the detection of X-ray polarization from the blazar Markarian 501 (Mrk 501). We measure an X-ray linear polarization degree Pi(x) of around 10%, which is a factor of around 2 higher than the value at optical wavelengths, with a polarization angle parallel to the radio jet. This points to a shock front as the source of particle acceleration and also implies that the plasma becomes increasingly turbulent with distance from the shock.

Polarized blazar X-rays imply particle acceleration in shocks

Baldini, Luca;
2022-01-01

Abstract

Most of the light from blazars, active galactic nuclei with jets of magnetized plasma that point nearly along the line of sight, is produced by high-energy particles, up to around 1 TeV. Although the jets are known to be ultimately powered by a supermassive black hole, how the particles are accelerated to such high energies has been an unanswered question. The process must be related to the magnetic field, which can be probed by observations of the polarization of light from the jets. Measurements of the radio to optical polarization-the only range available until now-probe extended regions of the jet containing particles that left the acceleration site days to years earlier(1-3), and hence do not directly explore the acceleration mechanism, as could X-ray measurements. Here we report the detection of X-ray polarization from the blazar Markarian 501 (Mrk 501). We measure an X-ray linear polarization degree Pi(x) of around 10%, which is a factor of around 2 higher than the value at optical wavelengths, with a polarization angle parallel to the radio jet. This points to a shock front as the source of particle acceleration and also implies that the plasma becomes increasingly turbulent with distance from the shock.
2022
Liodakis, Ioannis; Marscher, Alan P; Agudo, Iván; Berdyugin, Andrei V; Bernardos, Maria I; Bonnoli, Giacomo; Borman, George A; Casadio, Carolina; Casanova, Vı Ctor; Cavazzuti, Elisabetta; Rodriguez Cavero, Nicole; Di Gesu, Laura; Di Lalla, Niccoló; Donnarumma, Immacolata; Ehlert, Steven R; Errando, Manel; Escudero, Juan; Garcı A-Comas, Maya; Agı S-González, Beatriz; Husillos, César; Jormanainen, Jenni; Jorstad, Svetlana G; Kagitani, Masato; Kopatskaya, Evgenia N; Kravtsov, Vadim; Krawczynski, Henric; Lindfors, Elina; Larionova, Elena G; Madejski, Grzegorz M; Marin, Frédéric; Marchini, Alessandro; Marshall, Herman L; Morozova, Daria A; Massaro, Francesco; Masiero, Joseph R; Mawet, Dimitri; Middei, Riccardo; Millar-Blanchaer, Maxwell A; Myserlis, Ioannis; Negro, Michela; Nilsson, Kari; O'Dell, Stephen L; Omodei, Nicola; Pacciani, Luigi; Paggi, Alessandro; Panopoulou, Georgia V; Peirson, Abel L; Perri, Matteo; Petrucci, Pierre-Olivier; Poutanen, Juri; Puccetti, Simonetta; Romani, Roger W; Sakanoi, Takeshi; Savchenko, Sergey S; Sota, Alfredo; Tavecchio, Fabrizio; Tinyanont, Samaporn; Vasilyev, Andrey A; Weaver, Zachary R; Zhovtan, Alexey V; Antonelli, Lucio A; Bachetti, Matteo; Baldini, Luca; Baumgartner, Wayne H; Bellazzini, Ronaldo; Bianchi, Stefano; Bongiorno, Stephen D; Bonino, Raffaella; Brez, Alessandro; Bucciantini, Niccoló; Capitanio, Fiamma; Castellano, Simone; Ciprini, Stefano; Costa, Enrico; De Rosa, Alessandra; Del Monte, Ettore; Di Marco, Alessandro; Doroshenko, Victor; Dovčiak, Michal; Enoto, Teruaki; Evangelista, Yuri; Fabiani, Sergio; Ferrazzoli, Riccardo; Garcia, Javier A; Gunji, Shuichi; Hayashida, Kiyoshi; Heyl, Jeremy; Iwakiri, Wataru; Karas, Vladimir; Kitaguchi, Takao; Kolodziejczak, Jeffery J; La Monaca, Fabio; Latronico, Luca; Maldera, Simone; Manfreda, Alberto; Marinucci, Andrea; Matt, Giorgio; Mitsuishi, Ikuyuki; Mizuno, Tsunefumi; Muleri, Fabio; Ng, Stephen C-Y; Oppedisano, Chiara; Papitto, Alessandro; Pavlov, George G; Pesce-Rollins, Melissa; Pilia, Maura; Possenti, Andrea; Ramsey, Brian D; Rankin, John; Ratheesh, Ajay; Sgró, Carmelo; Slane, Patrick; Soffitta, Paolo; Spandre, Gloria; Tamagawa, Toru; Taverna, Roberto; Tawara, Yuzuru; Tennant, Allyn F; Thomas, Nicolas E; Tombesi, Francesco; Trois, Alessio; Tsygankov, Sergey; Turolla, Roberto; Vink, Jacco; Weisskopf, Martin C; Wu, Kinwah; Xie, Fei; Zane, Silvia
File in questo prodotto:
File Dimensione Formato  
Polarized blazar X-rays.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 4.24 MB
Formato Adobe PDF
4.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1161072
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 28
social impact