In the coming decades, we will face major computational challenges, when the improved sensitivity of third-generation gravitational wave detectors will be such that they will be able to detect a high number (of the order of 7 x10(4) per year) of multi-messenger events from binary neutron star mergers, similar to GW170817. In this Perspective, we discuss the application of multimodal artificial intelligence techniques for multi-messenger astrophysics, fusing the information from different signal emissions.

Computational challenges for multimodal astrophysics

Patricelli, B;
2022-01-01

Abstract

In the coming decades, we will face major computational challenges, when the improved sensitivity of third-generation gravitational wave detectors will be such that they will be able to detect a high number (of the order of 7 x10(4) per year) of multi-messenger events from binary neutron star mergers, similar to GW170817. In this Perspective, we discuss the application of multimodal artificial intelligence techniques for multi-messenger astrophysics, fusing the information from different signal emissions.
2022
Cuoco, E; Patricelli, B; Iess, A; Morawski, F
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1161288
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact