Sleep deprivation (SD) negatively affects several aspects of cognitive performance, and one of the most widely-used tools to evaluate these effects is the Psychomotor Vigilance Test (PVT). The present study investigated the possibility of predicting changes induced by SD in vigilant attention performance by evaluating the baseline electroencephalographic (EEG) activity immediately preceding the PVT stimuli onset. All participants (n = 10) underwent EEG recordings during 10 min of PVT before and after a night of SD. For each participant, the root mean square (RMS) of the baseline EEG signal was evaluated for each 1 s time window, and the respective average value was computed. After SD, participants showed slower (and less accurate) performance in the PVT task. Moreover, a close relationship between the changes in the baseline activity with those in cognitive performance was identified at several electrodes (Fp2, F7, F8, P3, T6, O1, Oz, O2), with the highest predictive power at the occipital derivations. These results indicate that vigilant attention impairments induced by SD can be predicted by the pre-stimulus baseline activity changes.
Sleep Deprivation-Induced Changes in Baseline Brain Activity and Vigilant Attention Performance
Tramonti Fantozzi, Maria Paola;Ciuti, Gastone;Faraguna, UgoUltimo
2022-01-01
Abstract
Sleep deprivation (SD) negatively affects several aspects of cognitive performance, and one of the most widely-used tools to evaluate these effects is the Psychomotor Vigilance Test (PVT). The present study investigated the possibility of predicting changes induced by SD in vigilant attention performance by evaluating the baseline electroencephalographic (EEG) activity immediately preceding the PVT stimuli onset. All participants (n = 10) underwent EEG recordings during 10 min of PVT before and after a night of SD. For each participant, the root mean square (RMS) of the baseline EEG signal was evaluated for each 1 s time window, and the respective average value was computed. After SD, participants showed slower (and less accurate) performance in the PVT task. Moreover, a close relationship between the changes in the baseline activity with those in cognitive performance was identified at several electrodes (Fp2, F7, F8, P3, T6, O1, Oz, O2), with the highest predictive power at the occipital derivations. These results indicate that vigilant attention impairments induced by SD can be predicted by the pre-stimulus baseline activity changes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.