We study existence and stability properties of ground-state standing waves for two-dimensional nonlinear Schrödinger equation with a point interaction and a focusing power nonlinearity. The Schrödinger operator with a point interaction (−Δα)α∈R describes a one-parameter family of self-adjoint realizations of the Laplacian with delta-like perturbation. The operator −Δα always has a unique simple negative eigenvalue eα. We prove that if the frequency of the standing wave is close to −eα, it is stable. Moreover, if the frequency is sufficiently large, we have the stability in the L2-subcritical or critical case, while the instability in the L2-supercritical case.

On stability and instability of standing waves for 2d-nonlinear Schrödinger equations with point interaction

Georgiev V.;
2022-01-01

Abstract

We study existence and stability properties of ground-state standing waves for two-dimensional nonlinear Schrödinger equation with a point interaction and a focusing power nonlinearity. The Schrödinger operator with a point interaction (−Δα)α∈R describes a one-parameter family of self-adjoint realizations of the Laplacian with delta-like perturbation. The operator −Δα always has a unique simple negative eigenvalue eα. We prove that if the frequency of the standing wave is close to −eα, it is stable. Moreover, if the frequency is sufficiently large, we have the stability in the L2-subcritical or critical case, while the instability in the L2-supercritical case.
2022
Fukaya, N.; Georgiev, V.; Ikeda, M.
File in questo prodotto:
File Dimensione Formato  
MasahiroNoriyoshi_2022_a.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 409.43 kB
Formato Adobe PDF
409.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
fgi2021jde_revised.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 399.78 kB
Formato Adobe PDF
399.78 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1161623
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 149
  • ???jsp.display-item.citation.isi??? 23
social impact