In the first section of his seminal paper on height pairings, Beilinson constructed an ℓ-adic height pairing for rational Chow groups of homologically trivial cycles of complementary codimension on smooth proper varieties over the function field of a curve over an algebraically closed field, and asked about a generalization to higher dimensional bases. In this paper we answer Beilinson’s question by constructing a pairing for varieties defined over the function field of a smooth variety B over an algebraically closed field, with values in the second ℓ-adic cohomology group of B. Over C our pairing is in fact Q-valued, and in general we speculate about its geometric origin.

A generalization of Beilinson's geometric height pairing

T. Szamuely
Co-primo
;
2022-01-01

Abstract

In the first section of his seminal paper on height pairings, Beilinson constructed an ℓ-adic height pairing for rational Chow groups of homologically trivial cycles of complementary codimension on smooth proper varieties over the function field of a curve over an algebraically closed field, and asked about a generalization to higher dimensional bases. In this paper we answer Beilinson’s question by constructing a pairing for varieties defined over the function field of a smooth variety B over an algebraically closed field, with values in the second ℓ-adic cohomology group of B. Over C our pairing is in fact Q-valued, and in general we speculate about its geometric origin.
2022
Szamuely, T.; Rössler, D.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1163052
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact