OBJECTIVES: The biomarkers of an immunological dysregulation due to a chronic HBV infection are indeed understudied. If untreated, this condition may evolve into liver impairment co-occurring with extrahepatic involvements. Here, we aim to identify a new panel of biomarkers [including immunoglobulin G (IgG) subclasses, RF, and Free Light Chains (FLCs)] that may be useful and reliable for clinical evaluation of HBV-related cryoglobulinemia. METHODS: We retrospectively analysed clinical data from 44 HBV-positive patients. The patients were stratified (according to the presence/absence of mixed cryoglobulinemia) into two groups: 22 with cryoglobulins (CGs) and 22 without CGs. Samples from 20 healthy blood donors (HDs) were used as negative controls. Serum samples were tested for IgG subclasses, RF (-IgM, -IgG, and -IgA type), and FLCs. RESULTS: We detected a strikingly different distribution of serum IgG subclasses between HDs and HBV-positive patients, together with different RF isotypes; in addition, FLCs were significantly increased in HBV-positive patients compared with HDs, while no significant difference was shown between HBV-positive patients with/without mixed cryoglobulinemia. CONCLUSION: The immune-inflammatory response triggered by HBV may be monitored by a peculiar profile of biomarkers. Our results open a new perspective in the precision medicine era; in these challenging times, they could also be employed to monitor the clinical course of those COVID-19 patients who are at high risk of HBV reactivation due to liver impairment and/or immunosuppressive therapies.
Solving the mystery of HBV-related mixed cryoglobulinemia: potential biomarkers of disease progression
Gragnani L.;
2021-01-01
Abstract
OBJECTIVES: The biomarkers of an immunological dysregulation due to a chronic HBV infection are indeed understudied. If untreated, this condition may evolve into liver impairment co-occurring with extrahepatic involvements. Here, we aim to identify a new panel of biomarkers [including immunoglobulin G (IgG) subclasses, RF, and Free Light Chains (FLCs)] that may be useful and reliable for clinical evaluation of HBV-related cryoglobulinemia. METHODS: We retrospectively analysed clinical data from 44 HBV-positive patients. The patients were stratified (according to the presence/absence of mixed cryoglobulinemia) into two groups: 22 with cryoglobulins (CGs) and 22 without CGs. Samples from 20 healthy blood donors (HDs) were used as negative controls. Serum samples were tested for IgG subclasses, RF (-IgM, -IgG, and -IgA type), and FLCs. RESULTS: We detected a strikingly different distribution of serum IgG subclasses between HDs and HBV-positive patients, together with different RF isotypes; in addition, FLCs were significantly increased in HBV-positive patients compared with HDs, while no significant difference was shown between HBV-positive patients with/without mixed cryoglobulinemia. CONCLUSION: The immune-inflammatory response triggered by HBV may be monitored by a peculiar profile of biomarkers. Our results open a new perspective in the precision medicine era; in these challenging times, they could also be employed to monitor the clinical course of those COVID-19 patients who are at high risk of HBV reactivation due to liver impairment and/or immunosuppressive therapies.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.