Seaports play a vital role in the global economy, as they operate as the connection corridors to all other modes of transport and as engines of growth for the wider region. But ports today are faced with numerous unique challenges and for them to remain competitive, significant investments are required. In support of greater transparency in policy making, decisions regarding investment need to be supported by data-driven intelligence. It is often an overlooked fact that seaports do not remain static over time; such spatial units often evolve according to environmental patterns both in size but also connectivity and operational capacity. As such any valid decision making regarding port investment and policy making, essentially needs to take into account port evolution over time and space. In this work, we leverage the huge amounts of vessel data that are progressively becoming available through the Automatic Identification System (AIS) and distributed machine learning to define a seaport's extended area of operation. Specifically, we present our adaptation of the well-known KDE algorithm to the map-reduce paradigm, and report results on the port of Shanghai.

A distributed approach to estimating sea port operational regions from lots of AIS data

Millefiori, LM;
2016-01-01

Abstract

Seaports play a vital role in the global economy, as they operate as the connection corridors to all other modes of transport and as engines of growth for the wider region. But ports today are faced with numerous unique challenges and for them to remain competitive, significant investments are required. In support of greater transparency in policy making, decisions regarding investment need to be supported by data-driven intelligence. It is often an overlooked fact that seaports do not remain static over time; such spatial units often evolve according to environmental patterns both in size but also connectivity and operational capacity. As such any valid decision making regarding port investment and policy making, essentially needs to take into account port evolution over time and space. In this work, we leverage the huge amounts of vessel data that are progressively becoming available through the Automatic Identification System (AIS) and distributed machine learning to define a seaport's extended area of operation. Specifically, we present our adaptation of the well-known KDE algorithm to the map-reduce paradigm, and report results on the port of Shanghai.
2016
978-1-4673-9005-7
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1164996
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 18
social impact