Acoustic pyrometry is a widely used technique for contactless temperature measurement. It may be used in several applications, especially when high temperatures and harsh environments are involved. For instance, it has been applied to measure the temperature distribution at gas turbine outlet. This technique is based on the measurement of the time of flight of an acoustic wave through a medium. If multiple emitter-receiver couples are used, by using a computational procedure a reconstruction of a temperature map is possible. On the other hand, a full assessment of the robustness of this technique to potential errors in time of flight estimation is still missing. In this study, the impact of an inaccuracy in time of flight estimation on the reconstruction of a correct temperature map is investigated by means of a statistical approach. As a general result, it was found that when the time of flight was measured without inaccuracies, temperature estimation errors may be lowered by simply increasing the number of cells in which the estimation is performed. However, when the estimation of the time of flight is affected by errors, an optimal configuration exists that minimize the temperature estimation errors.

Acoustic Pyrometry Robustness to Time of Flight Estimation Errors

Caposciutti, Gianluca
Primo
;
Ferrari, Lorenzo
Secondo
2021-01-01

Abstract

Acoustic pyrometry is a widely used technique for contactless temperature measurement. It may be used in several applications, especially when high temperatures and harsh environments are involved. For instance, it has been applied to measure the temperature distribution at gas turbine outlet. This technique is based on the measurement of the time of flight of an acoustic wave through a medium. If multiple emitter-receiver couples are used, by using a computational procedure a reconstruction of a temperature map is possible. On the other hand, a full assessment of the robustness of this technique to potential errors in time of flight estimation is still missing. In this study, the impact of an inaccuracy in time of flight estimation on the reconstruction of a correct temperature map is investigated by means of a statistical approach. As a general result, it was found that when the time of flight was measured without inaccuracies, temperature estimation errors may be lowered by simply increasing the number of cells in which the estimation is performed. However, when the estimation of the time of flight is affected by errors, an optimal configuration exists that minimize the temperature estimation errors.
2021
978-0-7918-8496-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1165267
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact