In this paper, a numerical study devoted to evaluate the application of a microwave imaging method for brain stroke detection is described. First of all, suitable operating conditions for the imaging system are defined by solving the forward electromagnetic scattering problem with respect to simplified configurations and analyzing the interactions between an illuminating electromagnetic wave at microwave frequencies and the biological tissues inside the head. Then, preliminary inversion results are obtained by applying an imaging procedure based on an iterative Gauss-Newton scheme to a realistic model of the human head. The proposed imaging algorithm is able to deal with the nonlinear and ill-posed problem associated to the integral equations describing the inverse scattering problem. The aim of the inversion procedure is related to the determination of the presence of a hemorrhagic brain stroke by retrieving the distributions of the dielectric parameters of the human tissues inside a slice of the head model.

A numerical study concerning brain stroke detection by microwave imaging systems

TAVANTI, EMANUELE
2018-01-01

Abstract

In this paper, a numerical study devoted to evaluate the application of a microwave imaging method for brain stroke detection is described. First of all, suitable operating conditions for the imaging system are defined by solving the forward electromagnetic scattering problem with respect to simplified configurations and analyzing the interactions between an illuminating electromagnetic wave at microwave frequencies and the biological tissues inside the head. Then, preliminary inversion results are obtained by applying an imaging procedure based on an iterative Gauss-Newton scheme to a realistic model of the human head. The proposed imaging algorithm is able to deal with the nonlinear and ill-posed problem associated to the integral equations describing the inverse scattering problem. The aim of the inversion procedure is related to the determination of the presence of a hemorrhagic brain stroke by retrieving the distributions of the dielectric parameters of the human tissues inside a slice of the head model.
2018
Bisio, Igor; Fedeli, Alessandro; Lavagetto, Fabio; Pastorino, Matteo; Randazzo, Andrea; Sciarrone, Andrea; Tavanti, Emanuele
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1166565
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 30
social impact