We propose a classification approach exploiting relationships between ellipsoidal separation and Support-vector Machine (SVM) with quadratic kernel. By adding a (Semidefinite Programming) SDP constraint to SVM model we ensure that the chosen hyperplane in feature space represents a non-degenerate ellipsoid in input space. This allows us to exploit SDP techniques within Support-vector Regression (SVR) approaches, yielding better results in case ellipsoid-shaped separators are appropriate for classification tasks. We compare our approach with spherical separation and SVM on some classification problems.
Ellipsoidal classification via semidefinite programming
Antonio Frangioni;Enrico Gorgone;
2023-01-01
Abstract
We propose a classification approach exploiting relationships between ellipsoidal separation and Support-vector Machine (SVM) with quadratic kernel. By adding a (Semidefinite Programming) SDP constraint to SVM model we ensure that the chosen hyperplane in feature space represents a non-degenerate ellipsoid in input space. This allows us to exploit SDP techniques within Support-vector Regression (SVR) approaches, yielding better results in case ellipsoid-shaped separators are appropriate for classification tasks. We compare our approach with spherical separation and SVM on some classification problems.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
afgm.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
913.84 kB
Formato
Adobe PDF
|
913.84 kB | Adobe PDF | Visualizza/Apri |
PublishedVersion.pdf
non disponibili
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.