The variety of applications and expected growth in ionic liquid production are raising concerns about the release of these compounds into aquatic systems. Up to date, 103 studies have provided ecotoxicological data regarding the exposure effects of Ionic Liquids towards aquatic microorganisms and invertebrate species: 61 were devoted to freshwater species (n = 28), while marine species (n = 12) were mentioned in 42. The aim of this review, by gathering published studies on ionic liquids and model aquatic organisms, was to present the toxic effects described in distinct species and to understand which are the main factors influencing the toxicity of some ionic liquids. In accordance with the most recognized pattern, freshwater species were featured in a higher number of publications than marine ones. After literature analysis, algal species were the most represented organisms in aquatic toxicity assessments. Among tested compounds, the imidazolium cations in combination with long alkyl-chain anions, showed to be the most toxic one. In analytical terms, it is not straightforward to find the undissociated compound in a natural compartment, as ionic liquids are composed of ionic components, easily subjected to dissociation. Given the aforementioned, the present review paper points out the need of increasing the number of organisms being assessed in ionic liquids toxicity assays, in order to start defining monitoring procedures. Moreover, such would allow a better understanding of ionic liquids contamination status and, also, the opportunity to remark the effectiveness of new in silico methods for the ecotoxicity assessment of this kind of substances.
Toxicity of ionic liquids in marine and freshwater microorganisms and invertebrates: state of the art
Monni, Gianfranca;Mezzetta, Andrea;Guazzelli, Lorenzo;Pretti, Carlo
2023-01-01
Abstract
The variety of applications and expected growth in ionic liquid production are raising concerns about the release of these compounds into aquatic systems. Up to date, 103 studies have provided ecotoxicological data regarding the exposure effects of Ionic Liquids towards aquatic microorganisms and invertebrate species: 61 were devoted to freshwater species (n = 28), while marine species (n = 12) were mentioned in 42. The aim of this review, by gathering published studies on ionic liquids and model aquatic organisms, was to present the toxic effects described in distinct species and to understand which are the main factors influencing the toxicity of some ionic liquids. In accordance with the most recognized pattern, freshwater species were featured in a higher number of publications than marine ones. After literature analysis, algal species were the most represented organisms in aquatic toxicity assessments. Among tested compounds, the imidazolium cations in combination with long alkyl-chain anions, showed to be the most toxic one. In analytical terms, it is not straightforward to find the undissociated compound in a natural compartment, as ionic liquids are composed of ionic components, easily subjected to dissociation. Given the aforementioned, the present review paper points out the need of increasing the number of organisms being assessed in ionic liquids toxicity assays, in order to start defining monitoring procedures. Moreover, such would allow a better understanding of ionic liquids contamination status and, also, the opportunity to remark the effectiveness of new in silico methods for the ecotoxicity assessment of this kind of substances.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.