: Interface tissues are functionally graded tissues characterized by a complex layered structure, which therefore present a great challenge to be reproduced and cultured in vitro. Here, we describe the design and operation of a 3D printed dual-chamber bioreactor as a culturing system for biphasic native or engineered osteochondral tissues. The bioreactor is designed to potentially accommodate a variety of interface tissues and enables the precise study of tissue crosstalk by creating two separate microenvironments while maintaining the tissue compartments in direct contact.

A Mesoscale 3D Culture System for Native and Engineered Biphasic Tissues: Application to the Osteochondral Unit

Chiesa, Irene;
2022-01-01

Abstract

: Interface tissues are functionally graded tissues characterized by a complex layered structure, which therefore present a great challenge to be reproduced and cultured in vitro. Here, we describe the design and operation of a 3D printed dual-chamber bioreactor as a culturing system for biphasic native or engineered osteochondral tissues. The bioreactor is designed to potentially accommodate a variety of interface tissues and enables the precise study of tissue crosstalk by creating two separate microenvironments while maintaining the tissue compartments in direct contact.
2022
Chiesa, Irene; Di Gesù, Roberto; Overholt, Kalon J; Gottardi, Riccardo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1169803
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact