The aim of this paper is to investigate the performance of a robotic spacecraft, whose primary propulsion system is an electric solar wind sail (E-sail), in a mission to a heliostationary point (HP)—that is, a static equilibrium point in a heliocentric and inertial reference frame. A spacecraft placed at a given HP with zero inertial velocity maintains that heliocentric position provided the on-board thrust is able to counterbalance the Sun’s gravitational force. Due to the finite amount of storable propellant mass, a prolonged mission toward an HP may be considered as a typical application of a propellantless propulsion system. In this respect, previous research has been concentrated on the capability of high-performance (photonic) solar sails to reach and maintain such a static equilibrium condition. However, in the case of a solar-sail-based spacecraft, an HP mission requires a sail design with propulsive characteristics that are well beyond the capability of current or near-future technology. This paper shows that a medium-performance E-sail is able to offer a viable alternative to the use of photonic solar sails. To that end, we discuss a typical HP mission from an optimal viewpoint, by looking for the minimum time trajectory necessary for a spacecraft to reach a given HP. In particular, both two- and three-dimensional scenarios are considered, and the time-optimal mission performance is analyzed parametrically as a function of the HP heliocentric position. The paper also illustrates a potential mission application involving the observation of the Sun’s poles from such a static inertial position.

E-Sail Optimal Trajectories to Heliostationary Points

Quarta A. A.
Primo
Conceptualization
;
Mengali G.
Secondo
Writing – Original Draft Preparation
2023-01-01

Abstract

The aim of this paper is to investigate the performance of a robotic spacecraft, whose primary propulsion system is an electric solar wind sail (E-sail), in a mission to a heliostationary point (HP)—that is, a static equilibrium point in a heliocentric and inertial reference frame. A spacecraft placed at a given HP with zero inertial velocity maintains that heliocentric position provided the on-board thrust is able to counterbalance the Sun’s gravitational force. Due to the finite amount of storable propellant mass, a prolonged mission toward an HP may be considered as a typical application of a propellantless propulsion system. In this respect, previous research has been concentrated on the capability of high-performance (photonic) solar sails to reach and maintain such a static equilibrium condition. However, in the case of a solar-sail-based spacecraft, an HP mission requires a sail design with propulsive characteristics that are well beyond the capability of current or near-future technology. This paper shows that a medium-performance E-sail is able to offer a viable alternative to the use of photonic solar sails. To that end, we discuss a typical HP mission from an optimal viewpoint, by looking for the minimum time trajectory necessary for a spacecraft to reach a given HP. In particular, both two- and three-dimensional scenarios are considered, and the time-optimal mission performance is analyzed parametrically as a function of the HP heliocentric position. The paper also illustrates a potential mission application involving the observation of the Sun’s poles from such a static inertial position.
2023
Quarta, A. A.; Mengali, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1170406
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact