Let V be a smooth quasi-projective complex surface such that the first three logarithmic plurigenera P-1(V) , P-2(V) and P-3(V) are equal to 1 and the logarithmic irregularity q(V) is equal to 2. We prove that the quasi-Albanese morphism a(v): V -> A(V) is birational and there exists a finite set S such that a(v) is proper over A(V) \ S , thus giving a sharp effective version of a classical result of Iitaka [12].

Effective characterization of quasi-abelian surfaces

Mendes Lopes M.;Pardini R.;Tirabassi S.
2023-01-01

Abstract

Let V be a smooth quasi-projective complex surface such that the first three logarithmic plurigenera P-1(V) , P-2(V) and P-3(V) are equal to 1 and the logarithmic irregularity q(V) is equal to 2. We prove that the quasi-Albanese morphism a(v): V -> A(V) is birational and there exists a finite set S such that a(v) is proper over A(V) \ S , thus giving a sharp effective version of a classical result of Iitaka [12].
2023
Mendes Lopes, M.; Pardini, R.; Tirabassi, S.
File in questo prodotto:
File Dimensione Formato  
effective-characterization-of-quasi-abelian-surfaces.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 489.64 kB
Formato Adobe PDF
489.64 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1170549
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact