Small ruminant lentiviruses (SRLVs) cause chronic, persistent infections in populations of domestic sheep (Ovis aries) and goats (Capra hircus) worldwide. The vast majority of SRLV infections involve two genotypes (A and B) that spread in association with the emergence of global livestock trade. However, SRLVs have likely been present in Eurasian ruminant populations since at least the early Neolithic period. Here, we use phylogenetic and phylogeographic approaches to reconstruct the origin of pandemic SRLV strains and infer their historical pattern of global spread. We constructed an open computational resource ('Lentivirus-GLUE') via which an up-to-date database of published SRLV sequences, multiple sequence alignments (MSAs), and sequence-associated metadata can be maintained. We used data collated in Lentivirus-GLUE to perform a comprehensive phylogenetic investigation of global SRLV diversity. Phylogenies reconstructed from genome-length alignments reveal that the deep divisions in the SRLV phylogeny are consistent with an ancient split into Eastern (A-like) and Western (B-like) lineages as agricultural systems disseminated out of domestication centres during the Neolithic period. These findings are also consistent with historical and phylogeographic evidence linking the early 20(th) century emergence of SRLV-A to the international export of Central Asian Karakul sheep. Investigating the global diversity of SRLVs can help reveal how anthropogenic factors have impacted the ecology and evolution of livestock diseases. The open resources generated in our study can expedite these studies and can also serve more broadly to facilitate the use of genomic data in SRLV diagnostics and research.
Emergence and pandemic spread of small ruminant lentiviruses
Mazzei, Maurizio;
2023-01-01
Abstract
Small ruminant lentiviruses (SRLVs) cause chronic, persistent infections in populations of domestic sheep (Ovis aries) and goats (Capra hircus) worldwide. The vast majority of SRLV infections involve two genotypes (A and B) that spread in association with the emergence of global livestock trade. However, SRLVs have likely been present in Eurasian ruminant populations since at least the early Neolithic period. Here, we use phylogenetic and phylogeographic approaches to reconstruct the origin of pandemic SRLV strains and infer their historical pattern of global spread. We constructed an open computational resource ('Lentivirus-GLUE') via which an up-to-date database of published SRLV sequences, multiple sequence alignments (MSAs), and sequence-associated metadata can be maintained. We used data collated in Lentivirus-GLUE to perform a comprehensive phylogenetic investigation of global SRLV diversity. Phylogenies reconstructed from genome-length alignments reveal that the deep divisions in the SRLV phylogeny are consistent with an ancient split into Eastern (A-like) and Western (B-like) lineages as agricultural systems disseminated out of domestication centres during the Neolithic period. These findings are also consistent with historical and phylogeographic evidence linking the early 20(th) century emergence of SRLV-A to the international export of Central Asian Karakul sheep. Investigating the global diversity of SRLVs can help reveal how anthropogenic factors have impacted the ecology and evolution of livestock diseases. The open resources generated in our study can expedite these studies and can also serve more broadly to facilitate the use of genomic data in SRLV diagnostics and research.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.