Pollution associated to marine plastic litter is raising increasing concerns due to its potential harmful effects on human health, biota, and coastal ecosystems. However, limited information is available on the degradation behavior of plastics, especially biodegradable ones, in dune habitats. Moreover, the effects of plastics on dune plant growth and ability to withstand environmental stresses and invasion by non-native plants have been largely neglected. This is a particularly relevant issue since biological invasions are major threats to dune ecosystems. In this 18-month study, we examined the degradation behavior of two plastic bags, non-biodegradable (NBP) or biodegradable/compostable (BP), in the dune environment by visual observations and analytical techniques. Concomitantly, we investigated the individual and combined effects of bag type and sand burial (no burial vs. partial burial) on the performance of a native dune plant (Thinopyrum junceum) and an invasive plant (Carpo-brotus sp.) and on their interaction. NBP did not show relevant degradation signs over the experimental period as expected. BP exhibited gradual surface modifications and changes in chemical functionality and were almost disintegrated after 18 months. Bags and burial reduced independently T. junceum survival and growth, and most plants died within 8 months of plastic exposure. Bags and burial did not affect Carpobrotus survival. However, burial decreased Carpobrotus growth while NBP increased it. Both plastics increased Carpobrotus competitive ability, and no T. junceum plants survived to co-occurrent Carpobrotus, BP, and burial. These findings indicate that removing all littered plastics from beach-dune systems not only is critical to reduce plastic pollution but also to prevent further spread of invasive species in coastal dunes.

Plastic litter in coastal sand dunes: Degradation behavior and impact on native and non-native invasive plants

Balestri E.
;
Fulignati S.;Raspolli Galletti A. M.;Lardicci C.
Ultimo
2023-01-01

Abstract

Pollution associated to marine plastic litter is raising increasing concerns due to its potential harmful effects on human health, biota, and coastal ecosystems. However, limited information is available on the degradation behavior of plastics, especially biodegradable ones, in dune habitats. Moreover, the effects of plastics on dune plant growth and ability to withstand environmental stresses and invasion by non-native plants have been largely neglected. This is a particularly relevant issue since biological invasions are major threats to dune ecosystems. In this 18-month study, we examined the degradation behavior of two plastic bags, non-biodegradable (NBP) or biodegradable/compostable (BP), in the dune environment by visual observations and analytical techniques. Concomitantly, we investigated the individual and combined effects of bag type and sand burial (no burial vs. partial burial) on the performance of a native dune plant (Thinopyrum junceum) and an invasive plant (Carpo-brotus sp.) and on their interaction. NBP did not show relevant degradation signs over the experimental period as expected. BP exhibited gradual surface modifications and changes in chemical functionality and were almost disintegrated after 18 months. Bags and burial reduced independently T. junceum survival and growth, and most plants died within 8 months of plastic exposure. Bags and burial did not affect Carpobrotus survival. However, burial decreased Carpobrotus growth while NBP increased it. Both plastics increased Carpobrotus competitive ability, and no T. junceum plants survived to co-occurrent Carpobrotus, BP, and burial. These findings indicate that removing all littered plastics from beach-dune systems not only is critical to reduce plastic pollution but also to prevent further spread of invasive species in coastal dunes.
2023
Menicagli, V.; Balestri, E.; Fulignati, S.; Raspolli Galletti, A. M.; Lardicci, C.
File in questo prodotto:
File Dimensione Formato  
ENVPOLL23.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 8.37 MB
Formato Adobe PDF
8.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1174130
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact