A new methodology for effective definition and efficient evaluation of dependability-related properties is proposed. The analysis targets the systems composed of a large number of components, each one modeled implicitly through high-level formalisms, such as stochastic Petri nets. Since the component models are implicit, the reward structure that characterizes the dependability properties has to be implicit as well. Therefore, we present a new formalism to specify those reward structures. The focus here is on component models that can be mapped to stochastic automata with one or several absorbing states so that the system model can be mapped to a stochastic automata network with one or several absorbing states. Correspondingly, the new reward structure defined on each component's model is mapped to a reward vector so that the dependability-related properties of the system are expressed through a newly introduced measure defined starting from those reward vectors. A simple, yet representative, case study is adopted to show the feasibility of the method.

Implicit Reward Structures for Implicit Reliability Models

Masetti G.;Robol L.;
2022-01-01

Abstract

A new methodology for effective definition and efficient evaluation of dependability-related properties is proposed. The analysis targets the systems composed of a large number of components, each one modeled implicitly through high-level formalisms, such as stochastic Petri nets. Since the component models are implicit, the reward structure that characterizes the dependability properties has to be implicit as well. Therefore, we present a new formalism to specify those reward structures. The focus here is on component models that can be mapped to stochastic automata with one or several absorbing states so that the system model can be mapped to a stochastic automata network with one or several absorbing states. Correspondingly, the new reward structure defined on each component's model is mapped to a reward vector so that the dependability-related properties of the system are expressed through a newly introduced measure defined starting from those reward vectors. A simple, yet representative, case study is adopted to show the feasibility of the method.
2022
Masetti, G.; Robol, L.; Chiaradonna, S.; Giandomenico, F. D.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1174966
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact