In the last years we have witnessed a pervasive use of location-aware technologies such as vehicular GPS-enabled devices, RFID based tools, mobile phones, etc which generate collection and storing of a large amount of human mobility data. The powerful of this data has been recognized by both the scientific community and the industrial worlds. Human mobility data can be used for different scopes such as urban traffic management, urban planning, urban pollution estimation, etc. Unfortunately, data describing human mobility is sensitive, because people’s whereabouts may allow re-identification of individuals in a de-identified database and the access to the places visited by individuals may enable the inference of sensitive information such as religious belief, sexual preferences, health conditions, and so on. The literature reports many approaches aimed at overcoming privacy issues in mobility data, thus in this survey we discuss the advancements on privacy-preserving mobility data publishing. We first describe the adversarial attack and privacy models typically taken into consideration for mobility data, then we present frameworks for the privacy risk assessment and finally, we discuss three main categories of privacy-preserving strategies: methods based on anonymization of mobility data, methods based on the differential privacy models and methods which protect privacy by exploiting generative models for synthetic trajectory generation.
A Survey on Privacy in Human Mobility
Monreale A.
;
2023-01-01
Abstract
In the last years we have witnessed a pervasive use of location-aware technologies such as vehicular GPS-enabled devices, RFID based tools, mobile phones, etc which generate collection and storing of a large amount of human mobility data. The powerful of this data has been recognized by both the scientific community and the industrial worlds. Human mobility data can be used for different scopes such as urban traffic management, urban planning, urban pollution estimation, etc. Unfortunately, data describing human mobility is sensitive, because people’s whereabouts may allow re-identification of individuals in a de-identified database and the access to the places visited by individuals may enable the inference of sensitive information such as religious belief, sexual preferences, health conditions, and so on. The literature reports many approaches aimed at overcoming privacy issues in mobility data, thus in this survey we discuss the advancements on privacy-preserving mobility data publishing. We first describe the adversarial attack and privacy models typically taken into consideration for mobility data, then we present frameworks for the privacy risk assessment and finally, we discuss three main categories of privacy-preserving strategies: methods based on anonymization of mobility data, methods based on the differential privacy models and methods which protect privacy by exploiting generative models for synthetic trajectory generation.File | Dimensione | Formato | |
---|---|---|---|
tdp.a464a22.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
953.28 kB
Formato
Adobe PDF
|
953.28 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.